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We report an experimental and theoretical study of the antiferromagneticS= 1
2 chain subject to uniform and

staggered fields. Using inelastic neutron scattering, we observe a bound-spinon state at high energies in the
linear chain compound CuCl2·2ssCD3d2SOd. The excitation is explained with a mean-field theory of interacting
S= 1

2 fermions and arises from the opening of a gap at the Fermi surface due to confining spinon interactions.
The mean-field model also describes the wave-vector dependence of the bound-spinon states, particularly in
regions where effects of the discrete lattice are important. We calculate the dynamic structure factor using exact
diagonalization of finite length chains, obtaining excellent agreement with the experiments.
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I. INTRODUCTION

When quantum particles interact, they can team up to
form new particles with fractional charge or spin as observed
in two-dimensional electron gases or low-dimensional
spin lattices. A particularly fruitful model system to study
emerging new particles and their interactions has been the
antiferromagneticsAFd S= 1

2 Heisenberg chain. It does not
order even atT=0 K due to strong quantum fluctuations
and its elementary excitations are spinons carrying frac-
tional S= 1

2, which interact only weakly and are unbound
particles.1 Spinons were observed in several materials, in-
cluding KCuF3,

2 BaCu2Si2O7,
3 and copper pyrazine

dinitrate.4 Strong interactions between spinons can arise
from the breaking of spin rotational symmetry as, for ex-
ample, in the three-dimensional coupled chain antiferromag-
net where the mean field associated with the long-range or-
dered ground state restricts spin fluctuations. This creates an
attractive potential for the spinons and at low energies they
condense into spin-wave excitations carryingS=1,5 as ob-
served in KCuF3 sRef. 6d and BaCu2Si2O7.

7

Recently excitations were observed in theS= 1
2 chain an-

tiferromagnet CuCl2·2ssCD3d2SOd sCDCd subject to uniform
and staggered magnetic fields which were interpreted as
bound spinon states.8 In the long-wavelength limit, the ex-
periment demonstrated that the low-energy excitations of a
S= 1

2 chain in a staggered field correspond to the soliton and
breather excitations of the quantum sine-Gordon model.9

However, the sine-Gordon model is only valid for a very
restricted range of wave vectors and does not apply for ex-
citations at smaller length scales where the discreteness of
the lattice becomes important. More importantly, it does not
fully describe the mechanism by which the staggered field
produces an attractive potential that binds spinons into the
long-lived dispersiveS=1 excitations as observed in the ex-
periment.

In this paper, we analyze the dispersion of the observed
bound-spinon states8 in detail, and we report the observation

of a bound-spinon state at high energies in CDC. In this
system which has a nearest-neighbor exchangeJ=1.5 meV,
a staggered field of the order of 1 T, which corresponds to a
Zeeman energygmBH,0.1 meV, qualitatively affects the
excitation spectrum to energies more than twiceJ at
3.4 meV. This is in stark contrast to spinon binding in
coupled chain magnets where the effects are only apparent
for "v<kBTN.7 A simple mean-field theory of fermions car-
rying S= 1

2 in one dimension captures the wave-vector depen-
dence of the bound-spinon states, and explains the high-
energy excitation through the opening of a gap at the Fermi
surface. This model represents a first step towards a compre-
hensive description of the incommensurate excitations in AF
S= 1

2 chains subject to staggered fields.

II. EXPERIMENT

CDC was identified as an AFS= 1
2 chain system in which

a staggeredg-tensor and/or Dzyaloshinskii-MoriyasDMd
interactions10,11 lead to a staggered fieldHst upon applica-
tion of a uniform fieldH. In CDC, a uniform magnetic field
H =s0,0,Hd along the c-axis generates a staggered field
Hst=sHst,0 ,0d along thea-axis, and the Hamiltonian can be
written as

H = o
i

J Si,Si+1 − gcmBHSi
z − gamBHsts− 1diSi

x, s1d

where gc and ga are the uniform part of the gyromagnetic
tensor along thec and a-axis, respectively. The staggered
field is given by

Hst =
1

2J

gc

ga
DH +

gs

ga
H, s2d

where gs is the staggered gyromagnetic form factor and
D= uDu is the length of the DM vector, which points along
the b-axis in CDC. The nearest-neighbor spin exchange
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along the chain is accurately known from susceptibility
measurements11 and inelastic neutron scattering.8 The spin
chains run along thea axis of the orthorhombic crystal struc-
ture sPnmad,12 with the Cu2+ ions separated by 0.5a±0.22c.
Wave-vector transfer is indexed in the corresponding recip-
rocal latticeQshkld=ha* +kb* + lc* , and we define the wave-
vector transfer along the chain asq=Q ·a. Due to weak in-
terchain interactions, CDC has a long-range AF order in zero
field belowTN=0.93 K with an AF wave vectorQm=a* . An
applied field along thec axis suppresses the ordered phase in
a second order phase transition atHc=3.9 T,10 indicating that
interchain interactions favor correlations that are incompat-
ible with the field-induced staggered magnetization.13 At
fields much greater thanHc, the staggered fields thus arise
mostly from a staggeredg tensor and DM interactions and
not from interchain interactions.

The neutron scattering experiments were performed on
7.76 g of deuterated single-crystalline CDC. The measure-
ments were carried out using the SPINS triple axis spectrom-
eter and the DCS time of flight spectrometer at the NIST
Center for Neutron Research. The SPINS measurements
were performed with a focusing analyzer covering 7° in 2Q
scattering angle set to reflectEf =5 meV to the center of the
detector. A Be filter rejected neutrons with energies higher
than 5 meV from the detection system. The measurements
were performed with the strongly dispersive direction along
the scattered neutron direction to integrate over wave vectors
along weakly dispersive directions. The experimental con-
figuration for the measurements made using the DCS spec-
trometer and the conversion of those data to absolute units
are described in detail elsewhere.8 They were performed with
an incident energyEi =3.03 meV and the incident beam par-
allel to thea axis for configuration A, and with an incident
energyEi =4.64 meV and angle of 60° between the incident
beam and thea axis for configuration B.

III. EXPERIMENTAL RESULTS

Figure 1 demonstrates the dramatic changes that CDC un-
dergoes upon application of a magnetic field. In zero field,
the neutron scattering spectrum forq=0.4p consists of a
strong peak which corresponds to the two-spinon continuum,
whose band width, at this wave vector is narrow and barely
distinguishable from the experimental resolution. In aH
=9.86 T. 3

4J/ sgmBd field applied along thec axis, which
also induces a staggered field along thea axis, the scattering
includes two resolution-limited excitations. According to the
quantum sine-Gordon theory, the lower-energy excitation
corresponds to a bound-spinon state which develops into
solitons and breathers at long wavelengths. The high-energy
excitation at 3.4 meV.2.2J, however, does not have a
simple interpretation in terms of the sine-Gordon model. Its
magnetic nature is apparent on account of its field depen-
dence. The inset to Fig. 1 shows the dispersion of this exci-
tation, which has a maximum atq=0.4p.

The dispersion of the high-field excitations at lower ener-
gies, "v,2 meV, is illustrated in Fig. 2 for two different
chain wave-vectorsq. For q=0.7p, there are two maxima as
a function of energy, corresponding to the well-defined

modes developing into the sine-Gordon soliton and breather
excitations at long wavelengths. Forq=0.4p, only one peak
is clearly observed because of the weak intensity of one of
the modes in this wave-vector region. The dispersion of these
field-induced resonant modes was determined as a function
of the chain wave vector,q, by fitting resolution-corrected
Gaussian line shapes to the observed scattering. The adjusted
excitation energies are shown in Fig. 3sad, illustrating that
magnetic spectral weight generally shifts to lower energies in
an applied field. However, due to theHst-induced gap, this
effect is much less pronounced than in a uniform field as the
ground state energy increases.16

IV. MEAN-FIELD THEORY

We now present a simple mean-field theory of interacting
S= 1

2 fermions which captures both the emergence of a new
excitation at high energies and the dispersion of the bound-
spinon states. As it is well-known, a mean-field approach
usually is not adequate to solve a one-dimensional system.
This is because, for finite range interactions, the fluctuations
are strong enough to preclude a nonzero value of an order
parameter at any fine temperature. Moreover, if the order
parameter is associated with a continuous symmetry, its
mean value is zero even atT=0. Consequently, a mean-field
theory that assumes a nonzero value of the order parameter
with excitations that are originated by small fluctuations of
such quantity cannot be a good description of a general one-
dimensional system.

FIG. 1. sColor onlined Neutron scattering intensity as a function
of energy transfer for zero-field and 9.86 T measured using SPINS.
The dashed line is a fit of two Gaussians convolved with the reso-
lution function given by Cooper and NathanssRef. 14d. The solid
line shows the calculated intensity obtained from the exact diago-
nalization of finite chains forH=11 T and scaled to the data, with
the nonmagnetic background given as the straight dashed line. The
dashed-dotted line is the exact two-spinon cross section of the an-
tiferromagneticS=1/2 chain sRef. 15d convolved with the experi-
mental resolution function. Inset: Excitation energy of the higher-
energy mode forH=9.86 T as a function of wave-vector transfer
along the chain direction.
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In the present case, the system is invariant under rotations
around thez axis forHst=0 and the candidate to be the order
parameter is thexy planar component of the staggered mag-
netizationM'

st. As expected for a continuous symmetry and a
gapless spectrum, the system is critical atT=0, i.e., the order
parameter has divergent fluctuations. However, the staggered
field Hst=0 couples linearly with the order parameterMx

st

along thex direction. Consequently, forHstÞ0, the Us1d
rotational symmetry is explicitly broken and the mean value
of Mx

st becomes nonzero at any temperature. This also
changes the nature of the excitations. The spinonsskink and
antikinksd are no longer the low energy quasiparticles of the
system since a pair of them is now confined by a linear
potential. A similar effect occurs when we increase the di-
mension of the system due to the interchain interaction.
Therefore we expect a mean-field treatment to be a good
approach for high enough values ofHst.

For Hst=0, we know that the theory must be critical with
the associated linear soft modes shown in Fig. 3sad. We also
know that a one-dimensional spin system can be mapped into
a fermionic system. In addition, a noninteracting fermionic
Hamiltonian has a ground state that is also critical and has
linear soft modes like the ones shown in Fig. 3sad. Therefore
it is convenient to use a fermionic representation for the
mean-field approach. For this purpose, the spin degrees of

Cu2+ ions are described in terms of fermionic creation and
annihilation operators:

Sj
n =

1

2o
a,a8

cja
† saa8

n cja8, s3d

where n=x,y,z and sn are the Pauli matrices. Using this
fermionic representation, Baskaran, Zou, and Anderson19

proposed a mean-field theorysMFTd to treat low dimen-
sional Heisenberg spinS=1/2 Hamiltonians. The MFT was
generalized to SUsNd spin modelssfor large Nd by Affleck
and Marston.20 Arovas and Auerbach21 studied this theory
in comparison with the Bethe Ansatz solution and showed
that the fluctuation corrections are important in enforcing
the Gutzwiller projection. Using an extended version of this
MFT, we will study here the ground state properties and
the spin dynamics of theS= 1

2 chain in a staggered field given
by H.

Apart from an irrelevant constant, the expression forH in
the fermionic representation is

FIG. 2. sColor onlined Neutron scattering intensity as a function
of energy transfer at 11 T for two different chain wave vectors,
measured using the DCS instrument with an incident energyEi

=4.64 meV. The solid line is the spectrum calculated from exact
diagonalization of finite chains in absolute units, taking into account
the polarization dependence of the experiment.

FIG. 3. sColor onlined sad Dispersion of the excitations atH
=11 T and the lower bound of the zero-field two-spinon cross sec-
tion sRef. 17d obtained through fits to the zero-field data. The bro-
ken lines are predicted thresholds for continua for aS=1/2 chain in
a uniform field sRef. 16d. The dashed-dotted line is the des-
Cloizeaux-Pearson lower bound for excitations inS=1/2 chains in
zero fieldsRef. 18d for J=1.5 meV. The solid lines correspond to
the dispersion obtained from Gaussian fits to the spectra obtained
by the exact diagonalization of finite chains. The dotted line corre-
sponds to the mean-field dispersion. The dashed double-dot line is a
guide to the eye for the high-energy mode above 3 meV, which was
measured at 9.86 T.sbd Integrated intensity of the two resonant
modes atH=11 T as a function of wave-vector transfer.
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H = −
J

2 o
i,s,s8

cis
† ci+1sci+1s8

† cis8 −
gc

2
mBHo

i,s
snis

−
ga

2
mBHsto

i,s
s− 1dicis

† cis̄, s4d

with s̄=−s. Since there is one spin per site, there is a con-
straint on the fermion occupation number:ni =osnis=1 with
nis=cis

† cis. For the Heisenberg term, we will use a linear
combination of the mean-field decoupling introduced in Ref.
19 and the other natural decoupling in the presence of a
staggered field along thex direction:

HMF = −
Jg

2 o
is

scis
† ci+1s + H.c.d −

gc

2
mBHo

i,s
snis

−
1

2
sgamBHst + Jddo

i,s
s− 1dicis

† cis̄ + lo
i

ni , s5d

where the Lagrange multiplier or chemical potential,l,

enforces the constraint of one spin per site at mean-field
level. We are assuming translational invariance forgi,
gi =oskcis

† ci+1sl=g, and a staggered dependence for the ef-
fective field di =oskcis

† cis̄l=ds−1di. This staggered depen-
dence is induced by the fieldHst. In momentum space, this
leads to

HMF = o
−p,køp,s

FS− Jg cosskd −
s

2
gcmBHDcks

+ cks

−
1

2
sgamBHst + Jddsck+ps

+ cks̄ + cks̄
+ ck+psdG , s6d

which can be written in the matrix formulation as

HMFskds = 3− Jg cosskd − s
1

2
gcmBH −

1

2
sgamBHst + Jdd

−
1

2
sgamBHst + Jdd Jg cosskd + s

1

2
gcmBH4 , s7d

for −p /2,køp /2. The eigenvalues of this matrix,

eks
± = ±ÎSJg cosskd + s

gc

2
mBHD2

+
1

4
sgamBHst + Jdd2,

s8d

are the energies of the quasiparticle operators,

aks
† = ukscks

† + vksck+ps̄
† ,

s9d
bks

† = − vkscks
† + uksck+ps̄

† ,

with

uks =

eks
+ + Jg cosskd + s

1

2
gcmBH

ÎSeks
+ + Jg cosskd + s

1

2
gcmBHD2

+
1

4
sgamBHst + Jdd2

,

s10d

vks =

1

2
gamBHst + Jd

ÎS«ks
+ + Jg cosskd + s

1

2
gcmBHD2

+
1

4
sgamBHst + Jdd2

.

HMF is diagonal in the new basis:

HMF = o
−p/2,køp/2,s

seks
+ bks

† bks + eks
− aks

† aksd. s11d

The mean-field parametersg and d are given by the self-
consistent equations:

g =
1

2p
o

s
E

−p/2

p/2

cosskdsuks
2 − vks

2 dfkaks
† aksl − kbks

† bkslgdk,

s12d

d =
1

2p
o

s
E

−p/2

p/2

uksvksfkaks
† aksl − kbks

† bkslgdk.

The value ofl is determined by imposing the average occu-
pation per site to be equal to 1:

1

2p
o

s
E

−p/2

p/2

fkaks
† aksl + kbks

† bkslgdk= 1. s13d

When H=Hst=0, the integration over the phase fluctua-
tions of the local fieldgi sRef. 21d renormalizes the value
of g given by Eq.s12d: g̃=pg /Î2. This renormalization im-
proves considerably the comparison with the exact
des-Cloizeaux-Pearson18 two-spinon thresholdsgex=p /2d.
To improve the quantitative comparison of the MFT with the
experiment and the exact diagonalization results, we will as-

sume here that the same renormalization factor,
p

Î2
, must be

M. KENZELMANN et al. PHYSICAL REVIEW B 71, 094411s2005d

094411-4



applied whenH andHst are finite. The value ofg is a mea-
sure of the effective strength of the spin fluctuations intro-
duced by the Heisenberg term. More specifically,gJ is the
Fermi velocity that in the original spin language corresponds
to the velocity of the spinon excitations.

Figure 4 shows the evolution of the fermionic bands when
the uniform and the staggered fields are applied. In the ab-
sence of these magnetic fieldsfFig. 4sadg, there is only one
band and the two-spinon cross section is associated with the
continuum of particle-hole excitations. The dispersion rela-
tion for the lower branch isg̃Jusinsqdu. When a uniform mag-
netic fieldHÞ0 is appliedfFig. 4sbdg, the spin up and down
bands are split by the Zeeman term. As a consequence, there
is a changedq of Fermi wave vectorsuqFu=p /2±dq and a
corresponding change in the wave vectors of the zero energy
modes: the energy of the transverse modes goes to zero at
q=p and q=2dq, while the longitudinal excitations have
gapless modes atq=0 and q=p−2dq. From Eq. s8d, the
main effect of a nonzero staggered fieldHst is to open a gap
at the Fermi level, i.e., the fermionic system becomes an
insulator and the spectrum is gaped for any excitationfFig.
4scdg. The gap results from the interband scattering which is
introduced by the staggered fieldHst. According to Eqs.s9d,
the degree of mixing is maximum atq=qF. The emergence
of this gap is consistent with the experimental data shown in
Fig. 3sad.

To study the excitations of the new ground state induced
by Hst it is necessary to calculate the neutron scattering cross
section within our MFT. The neutron scattering cross section
for the transverse excitationssn=x,yd at T=0 K is given by

Snnsq,vd =
1

8p
o

s
FE

p/2−q

p/2

suk+qsuks + hvk+qsvksd2

3dsv − ek+qs
+ + eks

− ddk

+E
−p/2

p/2−q

suk+qsvks̄ + hvk+qsuks̄d2

3dsv − ek+qs
+ + eks̄

− dGdk, s14d

whereh=−1 for n=x, h=1 for n=y, and −p,qøp. Note
that in Eq.s14d k+q must be contracted to the reduced Bril-
louin zonesk+q;k+q+npd. The cross section for longitu-
dinal excitations is

Szzsq,vd =
1

8p
o

s
FE

p/2−q

p/2

suk+qs̄uks + vk+qs̄vksd2

3dsv − ek+qs̄
+ + eks

− d

+E
−p/2

p/2−q

suk+qsvks + vk+qsuksd2

3dsv − ek+qs
+ + eks

− dGdk. s15d

Equationss14d and s15d reveal well-defined excitations
that are determined by the cancellation ofdv /dk, i.e., the
divergence of the Jacobian. In Fig. 5sad we show the differ-
ent branches of the transverse excitations. The lower branch
corresponds to the dispersion relation of the low energy ex-
citations. In agreement with the experimentssee Fig. 3d,
there are two minima, one is located at the incommensurate
wave vectorqI =2 arcsinsgcmBH /2gJd and the other one oc-
curs atq=p. It is interesting to note that forn=x the inten-
sity of this branch goes to zero atqI =2dq due to a cancella-
tion of the matrix element that multiplies the delta function
in the integrand of Eq.s14d. The black and the blue curves of
Fig. 5sad are the upper boundaries of interband particle-hole
excitations associated with the transverse modesfFig. 4sbdg.
More specifically, the black curve results from excitations in
which an electron is annihilated in the lower band and cre-
ated in the upper band, while for the blue curve the process is
the opposite. The green curve of Fig. 5sbd is the upper

FIG. 4. sColor onlined Schematic representation of the Fermi
particle dispersion insad zero field, sbd uniform field H, and scd
uniform field H and staggered fieldHst with H.Hst. In zero field
the spin up and down particles with wave vectork have the same
dispersion.

FIG. 5. sad Transverse andsbd longitudinal excitations obtained
from the mean-field theory, as described in the text in more detail.
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boundary for the intraband particle-hole excitations that de-
scribes the longitudinal modes. Note that these boundaries
appear with dashed lines in the spectrum of excitations with
the other polarizationsFig. 4d. This is a consequence of the
interbandq=p scattering which is introduced by the stag-
gered fieldHst. The dashed line just indicates that these
“shadow” branches have a very small intensity.

The gap in the low energy spectrum is not the only quali-
tative change introduced by the staggered fieldHst within the
mean-field approach. Since the Fermi wave vectorsqF
= ±p /2±dq are now extremal points of the new bandsfsee
Fig. 4scdg, we expect the emergence of a new branch of
transverse excitations associated with transitions between
points that are close toqF= 7p /2±dq sqF= ±p /2±dqd and
points in the proximity ofq=0 sq=pd. This new branch of
excitationsfsee the red curve in Fig. 5sadg coincides with the
new excitation which is experimentally observed at high en-
ergiesssee Fig. 1d, and thus explains our experimental re-
sults. For the longitudinal polarization, the new branch of
excitations is shifted byp relative to the transverse polariza-
tion fsee the red curve in Fig. 5sbdg. Since the maximum of
this longitudinal branch is located atq=p /2+dq, it is diffi-
cult to distinguish this branch from the breathers in the ex-
perimental data. The energy of this maximum is close to
3 meV according to the MFT while the experimental value is
3.4 meV. This is reasonable given that the MFT is not an
adequate approximation to give a quantitative description of
the excitations.

V. EXACT DIAGONALIZATION OF FINITE LENGTH
CHAINS

The intensities of the different branches are not properly
described by the mean-field equationss14d ands15d. For in-
stance, the MFT predicts a high intensity for the upper
boundary of the two-spinon excitations even at zero field for
which very accurate calculations are available.16 This is
clearly an artifact of the MFT. To obtain an accurate descrip-
tion of the intensities and the energies of the different
branches we complemented our analytical approach with the
exact diagonalization of finite size chains. Using the Lanczos
method, we obtained the exact ground state ofH for finite

chains of lengthL=12,14,16,18,22,20, and 24. Having
the ground state, we computed the dynamical magnetic
susceptibility, xsv ,qd, for all the possible wave vectors
q=0, 2p /L , . . . , 2psL−1d /L of a chain of lengthL using the
method introduced in Ref. 22. The wave vectorq=p is
present in all of the considered chains. The small changes in
the calculatedxsv ,pd as a function ofL indicate that the
finite size effects are small for the considered problem. In
general, smaller finite size effects are expected for systems
that have an excitation gap because the spin-spin correlation
length is finite.

The T=0 K structure factors were calculated using

Saasq,vd =
1

p
x9aasq,vd. s16d

The energy spectra were obtained by convoluting the discrete
spectra for finite chains with Lorentzian functions with a full
width at half maximum, 2G=0.1 meV, in order to model the
experimental energy resolution. The intensity of the calcu-
lated structure factors is given for a chain ofL spins and
normalized so thatoq,aedvSaasq,vd=SsS+1d as required
by the total scattering sum rule.

The calculated neutron scattering for all chain lengths was
averaged and the dynamic structure factor for the three dif-
ferent polarizations is shown in Fig. 6 as a function of wave-
vector transfer and energy transfer forHst=0.075H on an
absolute scale. The structure factorSzz polarized along the
uniform field contains a well-defined excitation with a mini-
mum gap energy at an incommensurate wave vector. The
structure factorsSxx and Syy polarized perpendicular to the
uniform field contain well-defined excitations whose disper-
sion has a minimum at the antiferromagnetic point, withSyy

having an excitation at a lower energy thanSxx. These exci-
tations correspond to the first and second breather of the
quantum sine-Gordon model.

Figure 6 also provides evidence that the excitation spec-
trum contains a substantial amount of continuum states, as
observed in the experiment.8 These states lie higher in energy
than the well-defined low-energy excitations and extend to
high energies. AtHst=0.075H our numerical calculations

FIG. 6. The dynamic structure
factorsSaasq,vd obtained through
exact diagonalization of finite
chains for Hst=0.075H, where a
=x, y, andz are the spin polariza-
tions. The uniform field is along
the c axis sz polarizationd, the
staggered field along thea axis sx
polarizationd.
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yield an expectation value of the Hamiltonian perS= 1
2 of

H=−0.34J, increased from the ground state energy at zero
field, H= s 1

4 − ln 2dJ=−0.44J, by 0.1J.
The numerical data were binned and Gaussian fits were

used to obtain excitation energies as a function of wave vec-
tor. These results are shown in Fig. 3sad as a solid line, show-
ing that the numerical calculations reproduce the dispersion
relation of the low energy modes. We calculated the dynamic
structure factor for the DCS experiment taking into account
wave-vector dependent mixing of the polarized dynamic
structure factorSaa. Figure 7 directly compares the calcu-
lated and measured intensities on an absolute scale, showing
that there is excellent agreement between the numerical cal-
culations and the experiment.

In addition, Fig. 6 shows that a new branch of transverse
magnetic excitations with the maximum aroundq=0.4p and
"v=3.5 meV emerges when the staggered field is present.
This provides a quantitative explanation for the high energy
peak that appears in the neutron scattering datassee Fig. 1d.
Muller et al.16 showed that this branch is not present for
Hst=0 by using macroscopic selection rules. For nonzeroHst,
the total spinSand its projection along thez direction,Sz, are
not good quantum numbers anymore, allowing the emer-

gence of this new excitation. Our mean-field approach is in
good agreement with this result.

VI. CONCLUSIONS

In summary, we have performed neutron scattering ex-
periments, numerical calculations, and an analytical study
investigating the AFS= 1

2 chain in uniform and staggered
fields. We found that the incommensurate bound-spinon
states are well-described by a mapping to a interacting fer-
mionic model after a renormalization of the energy. The
model also explains the emergence of new excitations with
the application of a staggered field. Our results suggest that
the proposed mapping is more powerful than initial results
suggested, and that it may also be useful for other quantum
spin systems with a relatively short correlation length.
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